LESSON PLAN OF PHYSICAL CHEMISTRY FOR B.Sc. 2nd SEMESTER SESSION 2021-2022

NAME OF LECTURE:-DR.PARVESH GUPTA

SUBJECT: - PHYSICAL CHEMISTRY

SR.NO.	MONTH	[TOPIC
1	April	1^{st}	Chemical Kinetic :-Introduction
	week		Rate of chemical reaction, rate equation and its types.
2			factors influencing
			the rate of a reaction – concentration, temperature, pressure,
			solvent, light, catalyst
3	April	2^{nd}	Order of a reaction, integrated r ate
	week		expression for zero order, first order
4			second and third order
			reactions. Half life period of a reaction.
5	April	3^{rd}	Effect of temperature on
	week		the rate of reaction – Arrhenius equation
6			Theories of reaction rate
			– Simple collision theory for unimolecular collision
7	April	4^{th}	Transition
	week		State theory of bimolecular reactions.
8			NUMERICAL PROBLEM ON THE BASIS OF FISRT AND SECOND ORDER
			REACTION.
9	MAY	1^{st}	NUMERICAL PROBLEM ON THE BASIS OF THIRD ORDER REACTION AND
	week		HALF LIFE PERIOD OF REACTION.
10			Imp. Characteristics of second and third order reaction.
11	MAY	2^{nd}	Rate of Radioactive disintegration on decay, Average life and Radioactive Equilibrium
	week		
12			Test
13	MAY	3^{rd}	Unit 2 nd -Electrochemistry part 1:-Introduction and some imp. Term, electrolytic
	week		conduction
14			factors affecting electrolytic conduct ion,
			specific conductance, molar conductance, equivalent conductance
			and relation among them
15	MAY	4^{th}	Arrhenius theory of ionization, Ostwald's Dilution Law
	week		
16			Debye-
			Huckel – Onsager's equation for strong electrolytes (elementary
			treatment only)
17	JUNE	1^{st}	Application of Kohlrausch's Law in calculation of
	week		conductance of weak electrolytes at infinite dilution
18			degree of
			dissociation

19	JUNE	2^{nd}	determination of Ka of acids determination of
	week		solubility product of sparingly soluble salts
20			Numerical on the bases of eq. conductivity.
21	JUNE	3^{rd}	Part 2 nd :- Conductometric
	week		titrations weak acid vs weak base and strong base
22			conductometric
			titrations of strong acid vs strong base
23	JUNE	4^{th}	conductometric
	week		titrations of strong acid vs strong base and weak acids
24			Concepts of pH and pKa
25	JULY	1^{ST}	Buffer solution, Buffer action
	week		
26			Migration of ions
27	JULY 2	ND	Calculations of Ph of buffer mixtures.
28			Calculations of Ph of buffer mixtures by Henderson – Hazel equation,
29	JULY 3	RD	Buffer mechanism of buffer action.
30			Numerical problems on the bases of conductivity, specific conductivity and degree of
			dissociation.
31			Test of 2 nd unit.

LESSON PLAN OF PHYSICAL CHEMISTRY FOR B.Sc. 6th SEMESTER SESSION 2021-2022

NAME OF LECTURE:-DR.PARVESH GUPTA

SUBJECT: - PHYSICAL CHEMISTRY

SR.NO.	DATE		TOPIC
1	April	1^{st}	Introduction to statistical mechanics Need for statistical
	week		thermodynamics, thermodynamic probability
2			Maxwell Boltzmann distribution statistics
3	April	2^{nd}	Born oppenheimer approximation, partition function and its
	week		physical significance
4			Factorization of partition function and ensemble.
5	April	3 rd	Part 2 nd :- Photochemistry:- Interaction of radiation with matter,
	week		difference between thermal and Photochemical processes.
6			Laws of photochemistry: Grotthus-Drapper law, Stark- Einstein
			law (law of photochemical equivalence),
7	April	4^{th}	Jablonski diagram depicting various processes occurring in the
	week		excited state, qualitative description of fluorescence
8			phosphorescence, non-radiactive processes (internal conversion,
			intersystem crossing)
9	MAY	1^{st}	quantum yield, photosensitized reactions-energy transfer Processes
	week		(simple examples).
10			Photo chemical equlibria, photo inbhitors and photo stationary
			state
11	MAY	2^{nd}	Difference between phosphorescence and fluorescence,
	week		luminncence. Example of photochemical reactions and their
			mechanism.
12			Quenching of fluorescence –stern volumer equation.
13	MAY	3^{rd}	Unit 2 nd :- Solutions, Dilute Solutions and Colligative Properties:-
	week		introduction, mode of expressing the concentration of a solution,
			molar free energy,
14			Fugacity and activity and activity coefficient. Ideal and non-ideal
		a	solutions,
15	MAY	4^{th}	Dilute solutions, Raoult's law. Colligative properties: (i) relative
	week		lowering of vapour pressure (
16			Thermodynamic derivation of relative lowering of vapour
			pressure.

our pressure, elevation in in boiling point. and elevation in boiling imental determination in
in boiling point. and elevation in boiling imental determination in
in boiling point. and elevation in boiling imental determination in
and elevation in boiling imental determination in
imental determination in
imental determination in
etween amount of
and depression in freezing
of osmotic pressure. semi
pressure
pressure
ses of normal, dissociated
nent and meaning of the
freedom
se rule, phase equilibria of
er system
ilibria of two component
_
Example Pb-Ag system,

Lesson Plan (April 2021 - July2022)

Name of Assistant Professor: Dr.Parvesh Gupta Subject: Inorganic Chemistry

Class: B.Sc. I (II SEM)

S.N	Month	Week	Торіс
1.	April	1	Hydrogen Bonding, Vander Waal's forces, Metallic Bonds, Semiconductors
		П	S-Block elements, Comparative study of the elements including diagonal relationship Anomalous behaviour of Lithium and Berylium compared to other elements in the
		ш	same group, Salient features of hydrides, oxides halides, hydroxides
		IV	Behaviour of solution in liquid ammonia, Introduction to Chemistry of noble gases, general physical properties
2.		v	Low chemical reactivity, chemistry of xenon, Structure and bonding in fluorides
	May	I	Structure and bonding in Oxides and oxyflourides of xenon
		II	P-block elements, electronic configuration, atomic and ionic size definition, methods of determination or evaluation, trend in periodic table (in s and p-block elements)
		ш	Metallic character, melting point, ionization energy,
			Electron affinity, electronegativity, inert pair effect, and diagonal relationship
3.		IV	Boron family: Diborane: preparation, properties and structure
		v	Diborane structure, Structure and bonding in fluorides
	June	I	Borazine: chemical properties and structure
		П	Relative strength of trihalides of Boron as Lewis acids, structure of aluminium chloride

4.			
		III	Carbon family and Nitrogen family: Catenation, carbides, fluorocarbons, silicates Oxides:
	June	IV V	Structure of oxides of nitrogen and phosphorus, oxyacids
			Structure and relative strength of oxy acids of nitrogen
	July	I	Structure and relative strength of oxy acids of phosphorus
		II	Structure of white and red phosphorus
			Halogen Family: interhalogen compounds: properties and structure
		ĨV	Hydra and oxy acids of chlorine- structure and comparison of acid strength Cationic nature of iodine