(Even Semester April 2022 to mid July 2022)

B.Sc. I (Non-Med)

Weeks	Dates	(Dr. Vidhi Mann)				
		Paper – I (Properties of Matter and kinetic Theory of Gases) and Paper – II (Semiconductor Devices)				
Week 1	11-16 April	Paper 1 Unit I: Moment of inertia Rotation of rigid body, Moment of inertial, Torque, angular momentum, Kinetic Energy				
		rotation, Theorem of perpendicular and parallel axes (with proof), Moment of inertia of solid sphere, hollow sphere, spherical shell				
		solid cylinder, hollow cylinder.				
Week 2	18- 23 April	Moment of inertia of solid bar of rectangular cross-section, Fly wheel, Moment of inertia of an irregular body, Acceleration of a				
		body rolling down on an inclined plane. Numerical Practice. Class Test				
		Unit II: Elasticity - Elasticity, Stress and Strain, Hook's law, Elasticity, Stress and Strain, Hooke's law.				
Week 3	25-30 April	Elastic constant and their relations, Poisson's ratio, Torsion of cylinder and twisting couple, Determination of coefficient of				
		modulus of rigidity - Maxwell's needle, Bending of beam (Bending moment and its magnitude), Cantilever and Centrally loaded				
		beam, Determination of Young's modulus for the material of the beam.				
Week 4	02-07 May	Elastic constants for the material of the wire by Searle's method, Numerical Practice.				
		Paper 2 Unit I: Energy bands in solid, intrinsic and extrinsic semiconductors, carrier mobility and electrical resistivity of				
		semiconductors, Hall effect.				
Week 5	09-14 May	P-N Junction diode and their Characteristics, Zener and Avalanche breakdown, Zener Diode, Light Emitting diode (LED),				
		Photoconduction in semiconductors, Photodiode, Solar Cell, P-N Junction as a rectifier, half wave and full wave rectifier (with				
		derivation), filters (basic), filters (Series inductor, Shunt capacitance, L- Section of choke, π and R.C. filter circuits), Numerical				
		Practice, Assignment				
Week 6	16-21 May	Unit -II: Transistors:- Junction transistors, Working of NPN and PNP transistors, Three configurations of transistors (C-B, C-E,				
		C-C modes), Common Base , Common Emitter characteristics of transistors, Common collector characteristics of transistors,				
		Constant of a transistor and their relation, Advantages and disadvantages of C-E configuration, D.C. load line, Transistor biasing.				
Week 7	23-28 May	Various methods of transistor biasing and stabilization. Numerical Practice, Class test				
		Unit-III: Transistor Amplifiers introduction, Classification of amplifiers , common base amplifier, common emitter amplifiers,				
		coupling of amplifiers, RC coupled amplifier (two stage concept of bandwidth, no derivation),				
Week 8	30 May – 04	Feedback in amplifiers, Advantages of negative feedback, emitter follower, distortion in amplifiers. Numerical Practice. Test				
	Juno	Unit -IV: Oscillators, Principle of oscillation, classification of oscillators, Condition for self sustained oscillation: Barkhausen				
	JUIIC	criterion for oscillation.				
Week 9	06-11 June	Tuned collector common emitter oscillator, Hartley oscillator, C.R.O. Principle and working, Numerical practice				
	1					

Week 10	13-18 June	Paper 1 Unit III: Assumption of Kinetic theory of gases, pressure of an ideal gas (with derivation), Kinetic interpretation of			
		Temperature, Ideal Gas equation, Degree of freedom, Law of Equipartition of energy and its application for specific heat of gas,			
		Real gases equation.			
Week 11	20-25 June	Vander wall's equation, Brownian motion(Qualitative), Numerical practice, Assignment			
		Unit IV: Maxwell's distribution of speed and velocities Maxwell's law of speed distribution: most probable speed			
Week 12	27-02 July	Average and r.m.s. speed, Mean free path, Transport of energy and momentum, Diffusion of gases, Numerical Practice, Test			
Week 13	04-09 July	Paper- I Revision and Test			
Week 14	11-16 July	Paper- II Revision and Test			

(Even Semester April 2022 to mid July 2022)

B.Sc. II (Non-Med)

Weeks	Dates	(Mrs. Anuradha Gandhi)				
		Paper – I (Statistical Physics) and Paper – II (Optics)				
Week 1	04 - 09 April	Paper II : Unit II- Fourier theorem and Fourier series, evaluation of Fourier coefficient, importance and limitations of Fourier				
		theorem, even and odd functions,, Fourier series of functions f(x) between (i) 0 to 2pi, (ii) -pi to pi				
		Fourier series of functions f(x) between (iii) 0 to pi, (iv) –L to L,, complex form of Fourier series, Application of Fourier theorem				
		for analysis of complex waves, solution of triangular waves, solution of rectangular waves, half wave rectifier,				
Week 2	11-16 April	full wave rectifier outputs, Fourier integrals, Numerical Practice				
		Unit III-Fourier transforms Fourier transforms and its properties, Application of Fourier transform (i) for evaluation of integrals				
Week 3	18- 23 April	(ii) for solution of ordinary differential equations,				
		f(x) = e - x2/2; X < a; f(x) = 0 X > a				
		$f(x)=e-x^{2/2}; X a$				
		Geometrical Optics I : Matrix methods in paraxial optics, Effects of translation and refraction, derivation of thin lens and thick lens				
		formulae unit plane, nodal planes, system of thin lenses, Numerical Practice, Assignment				
Week 4	25-30 April	Unit-IV: Geometrical Optics II: Chromatic spherical, coma, astigmatism and distortion aberrations and their remedies, Fiber				
		Optics Optical fiber, Critical angle of propagation, Mode of Propagation, Acceptance angle, Fractional refractive index change,				
		Numerical aperture, Types of optics fiber, Normalized frequency, Pulse dispersion, Attenuation				
Week 5	02-07 May	Applications, Fiber optic Communication, Advantages, Numerical Practice				
		Paper I: Unit - I Microscopic and Macroscopic systems, Probability, statistical probability, A-priori probability				
		Tossing of 2,3 and any number of Coins, Permutations and combinations, distributions of N distinguishable particles in two boxes				
		of equal size, distributions of N indistinguishable particles in two boxes of equal size				
Week 6	09-14 May	Micro and Macro states, Thermodynamical probability, Constraints and Accessible states, Statistical fluctuations, general				
		distribution of distinguishable particles in compartments of different sizes, Condition of equilibrium between two systems in				
		thermal contact β parameter, Entropy and Probability (Boltzmann's relation). Numerical Practice				
Week 7	16-21 May	Unit -II: Statistical Physics II Postulates of statistical physics, Phase space, Division of Phase space into cells, three kinds of				
		statistics, M. B. statistics applied to an ideal gas in equilibrium- energy distribution law, speed distribution law , velocity				
		distribution law, Expression for average speed, r.m.s. speed,				
Week 8	23-28 May	Expression for average velocity, r. m. s. velocity, most probable energy & mean energy for Maxwellian distribution				
		Numerical Practice, Test				

		Unit-III: Quantum Statistics Need for Quantum Statistics, Bose-Einstein energy distribution law,, Application of B.E. statistics to			
		Planck's radiation law B.E. gas			
Week 9	30 May – 04	Degeneracy and B.E. Condensation,, Fermi Dirac energy distribution law, F.D. gas and Degeneracy, Fermi energy and Fermi			
	June	temperature, Fermi Dirac energy distribution law, Fermi Dirac gas and degeneracy			
Week 10	06-11 June	Fermi energy and Fermi temperature, Fermi Dirac energy distribution law for electron gas in metals, Zero point energy, Zero point			
		pressure and average speed (at 0 K) of electron gas,, Specific heat anomaly of metals and its solution. M.B. distribution as a			
		limiting case of B.E. and F.D. distributions.			
Week 11	13-18 June	Comparison of three statistics, Numerical Practice, Assignment			
		Unit IV: Theory of Specific Heat of Solids: Dulong and Petit law. Derivation of Dulong and Petit law from classical physics,			
		Specific heat at low temperature, Einstein theory of specific heat, Criticism of Einstein theory, Debye model of specific heat of			
		solids, success and shortcomings of Debye theory			
Week 12	20-25 June	Comparison of Einstein and Debye theories., Numerical Practice			
		Paper II Unit I: Polarization by reflection, refraction and scattering, malu's law, Double refraction, Huygens's Theory, analysis of			
		polarized light, Nicol prism			
Week 13	27-02 July	Quarter wave plate, half wave plate, Plane, circularly and elliptically polarized light, Optical activity, Fresnel's theory of optical			
		rotation, Specific rotation and polarimeters, Numerical Practice, Assignment			
Week 14	04-09 July	Paper- I Revision and Test			
Week 15	11-16 July	Paper- II Revision and Test			

(Even Semester April 2022 to mid July 2022)

B.Sc. III (Non-Med)

Weeks	Dates	Teacher's Name - Dr. Saroj Rani				
		Paper II (Atomic and Molecular Physics				
Week 1	04 - 09 April	Unit I : Atomic Spectroscopy -introduction, emission and absorption spectra, Bohr's Atomic Model				
		spectra of hydrogen atom, complete explanation of spectra, Rydberg constant mass shortcoming of Bohr's				
		model, Wilson sommerfieid quantization rule, Bohr's corresponding model				
Week 2	11-16 April	shortcoming of this model, vector atom model, various quantum no. associated with vector model				
		shortcoming of this model, Numerical Practice				
Week 3	18- 23 April	Unit II: Vector Atom Model (single Valence electron)- Introduction				
		Orbital and magnetic dipole moment, Larmor's precession and theorem, Penetrating and non penetrating				
		model. Quantum defect and spin orbit interaction energy, Hydrogen fine spectra, Main feature of alkali				
		spectra, Absorption spectra of alkali atom intensity rule for doublets				
Week 4	25-30 April	Comparison of alkali and hydrogen spectra, Numerical Practice, Assignment, TEST				
		Unit III: Vector atom model for two valence electron				
		LS Coupling and Interaction Energy in LS coupling				
Week 5	02-07 May	JJ coupling and Interaction Energy in JJ coupling, Comparison of spectral terms in LS and JJ coupling				
		Hyperfine structure of spectral line and its origin, Nuclear Spin				
Week 6	09-14 May	y Numerical Practice Unit IV Atom in external field (Introduction)				
		Normal Zeeman effect. Anomalous Zeeman Effect, Paschen –Back effect of a single valence electron system.				
		Weak Field Stark Effect, Numerical Practice and Test				
Week 7	16-21 May	Unit I: Crystalline and glassy forms, liquid crystal, crystal structure, periodicity, translation vector and axes,				
		unit cell, primitive cell, Wienger sietz primitive cell				
		symmetry operation for a two dimensional crystal, Bravis lattice for two dimension, Bravis lattice for three				

	dimension, crystal plane and miller indices, Inter planar spacing,				
Paper-I (Solid State Physics and Nanotechnology)					
Week 8	23-28 May	crystal structures Numerical Practice Unit II : X-ray Diffraction, Bragg Diffraction K –spacing Reciprocal lattice and its physical significance, reciprocal lattice to a simple cubic lattice, reciprocal lattice to a body centered cubic Reciprocal lattice to a face centered cubic			
Week 9	30 May – 04 June	Unit III : Survey of superconductivity, high Tc superconductor, isotopic effect, critical magenetic field, Miessner effect, London and pippard's equation, classification of superconductor, BCS Theory and flux quantization BCS Theory and flux quantization, Josephon effect, application and limitation of superconductivity, Numerical Practice			
Week 10	06-11 June	Unit IV: Nanophysics definition, length scale, importance of Nanoscale and technology, history, benefits and challenge in molecular manufacturing Molecular assembler concept, vision and objective of nanotechnology, Application of nanotechnology in different fields. Numerical Practice and Assignment			
Week 11	13-16 June	Paper II- Unit IV Rotational spectra and vibrational spectra, Rotator Model, Raman effect and Electronic Spectra, Assignment and Test			

(Even Semester April 2022 to mid July 2022)

B.Sc. III (Non-Med)

Weeks	Dates	Teacher's Name	Dates	(Dr. Vidhi Mann)
		(Dr. Saroj Rani)		Paper-I (Solid State Physics and Nanotechnology)
Week 1	04 - 06 April	Unit I : Atomic Spectroscopy -introduction, emission	07-09 April	Unit I : Crystalline and glassy forms, liquid crystal,
		and absorption spectra, Bohr's Atomic Model		crystal structure, periodicity, translation vector and axes,
		spectra of hydrogen atom, complete explanation of		unit cell, primitive cell, Wienger sietz primitive cell
		spectra		
Week 2	11-13 April	Rydberg constant mass shortcoming of Bohr's model,	14-16 April	symmetry operation for a two dimensional crystal, Bravis
		Wilson sommerfieid quantization rule, Bohr's		lattice for two dimension, Bravis lattice for three
		corresponding model		dimension, crystal plane and miller indices
Week 3	18- 20 April	shortcoming of this model, vector atom model, various	21-23 April	Inter planar spacing, crystal structures
		quantum no. associated with vector model		Numerical Practice
Week 4	25-27 April	shortcoming of this model, Numerical Practice	28-30 April	Unit II : X-ray Diffraction, Bragg Diffraction
				K –spacing
Week 5	02-04 May	Unit II: Vector Atom Model (single Valence electron)-	05-07 May	Reciprocal lattice and its physical significance, reciprocal
		Introduction		lattice to a simple cubic lattice, reciprocal lattice to a
		Orbital and magnetic dipole moment, Larmor's		body centered cubic
		precession and theorem, Penetrating and non penetrating		

		model		
Week 6	09-11 May	Quantum defect and spin orbit interaction energy,	12-14 May	Reciprocal lattice to a face centered cubic
		Hydrogen fine spectra, Main feature of alkali spectra,		Numerical Practice, Assignment
		Absorption spectra of alkali atom intensity rule for		
		doublets		
Week 7	16-18 May	Comparison of alkali and hydrogen spectra, Numerical	19-21 May	Unit III: Survey of superconductivity, high Tc
		Practice, Assignment		superconductor, isotopic effect, critical magenetic field,
				Miessner effect
Week 8	23-25 May	Unit III: Vector atom model for two valence electron	26-28 May	London and pippard's equation, classification of
		LS Coupling and Interaction Energy in LS coupling		superconductor, BCS Theory and flux quantization
Week 9	30 May – 01	JJ coupling and Interaction Energy in JJ coupling,	02-04 June	BCS Theory and flux quantization, Josephon effect,
	June	Comparison of spectral terms in LS and JJ coupling		application and limitation of superconductivity,
				Numerical Practice
Week 10	06-08 June	Hyperfine structure of spectral line and its origin,	09-11 June	Unit IV: Nanophysics definition, length scale,
		Nuclear Spin		importance of Nanoscale and technology, history,
				benefits and challenge in molecular manufacturing
Week 11	13-15 June	Numerical Practice	16-18 June	Molecular assembler concept, vision and objective of
		Unit IV Atom in external field (Introduction)		nanotechnology, Application of nanotechnology in
		Normal Zeeman effect		different fields.
Week 12	20-22 June	Anomalous Zeeman Effect, Paschen –Back effect of a	23-25 June	Numerical Practice and Assignment
		single valence electron system		Paper II- Unit IV
				Rotational spectra and vibrational spectra
Week 13	27-29 June	Weak Field Stark Effect, Numerical Practice and Test	30 June-02	Rotator Model, Raman effect and Electronic Spectra
			July	
Week 14	04-06 July	Unit- I and Unit- II Revision and Test	07-09 July	Unit- I and Unit- II Revision and Test
Week 15	11-13 July	Unit- III and Unit- IV Revision and Test	14 – 16 July	Unit- III and Unit- IV Revision and Test